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An inversion of the REDOR signal to recover the dipolar cou-
plings has been recently proposed [K. T. Mueller et al., Chem.
Phys. Lett. 242, 535 (1995)]: The corresponding integral transform
was performed by tabulation of the kernel followed by numerical
integration. After explicit determination of the inverse REDOR
kernel by the Mellin transform method, we propose an alternative
inversion method based on Fourier transforms. Representation of
the inverse REDOR kernel by its asymptotic expansion reveals
that the inverse REDOR operator is essentially a weighted sum of
a cosine transform and of its derivative. Consequently, known
properties of Fourier transforms can easily be transposed to the
REDOR inversion, allowing for a precise discussion of the value of
the method. Moreover, the first term of the asymptotic expansion
leading to a derivative of a cosine transform, the REDOR inver-
sion is found to be extremely sensitive to noise, thus considerably
reducing the useful part of the theoretical dipolar window. © 1998

Academic Press
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INTRODUCTION

Because the dipolar coupling is strongly dependent on the
internuclear distance, its measurement in solids by the rota-
tional echo double resonance (REDOR) method in magic-angle
spinning (MAS) solids has proven to be a valuable structural
tool. Since its development by Gullion and Shaefer (1), nu-
merous examples of its application in such diverse fields as
biochemistry (2–4), inorganic chemistry (5–7), and catalysis
(8–11) can be found in the literature. Basically, the REDOR
experiment is a rotor-synchronized spin–echo with additional
p pulses on the decoupling channel which selectively prevent
refocusing of the heterodipolar dephasing. The intensity of the
echo is related to the heterodipolar coupling strength and to the
number of appliedp pulses, while MAS averaging ensures the
spectral resolution on the chemical shift axis. Whenp pulses
are applied at half and full rotor periods duringn rotor periods
(Fig. 1), the heterodipolar dephasing for an isolated interacting
pair has been calculated to be (12, 13)

|Df | 5 4Î2n
nD

nr
cosa sinb cosb 5 2Î2tnDcosa sin 2b, [1]

wherenD is the heterodipolar coupling strength expressed in
frequency units,nr is the rotor spinning frequency,t (or n/nr) is
the evolution time, anda and b are the azimuthal and polar
angles of the internuclear vector with the spinning axis. The
REDOR signal normalized to the full echo is therefore given
by the powder average

S~tnD! 5
S

S0
5

1

4p E
0

2p

da E
0

p

db

sin b cos@2Î2tnDcosa sin 2b # . [2]

For a single coupling,nD can be obtained by measuring the
REDOR signal at one or a few values of the evolution time and
by adjusting it to the theoretical expression of Eq. [2]
(2, 3, 10, 14). For more complex distributions of couplings, or
when better accuracy is desired, a full REDOR curve is re-
corded and adjusted (5–7, 11). An important limitation of this
procedure is that ana priori knowledge of the functional form
of the distribution of couplings is required.

Recently, Mueller made the seminal realization that the
REDOR signal has a simple analytical form as a product of
cylindrical Bessel functions of the first kind (15) (Appendix A)

S~tnD! 5
p

2Î2
J1/4~Î2tnD!J21/4~Î2tnD ! . [3]

It was subsequently demonstrated that the REDOR signal
could be invertedvia a ‘‘REDOR transform’’ (16). This ad-
vance is particularly fertile, as it allows for the determination
of the distribution of coupling without anya priori assumption
and, consequently, permits full use of the REDOR sequence as
a 2D experiment (17): the time evolution during the free
induction decay of the echo leading to a chemical shift axis
after traditional Fourier transform and the time evolution dur-
ing the p pulses train leading to a purely heterodipolar axis
after REDOR transform.

The object of this paper is to reveal through mathematical
inspection the practical consequences of Eq. [3]. After going
through the formal inversion problem, we will show that an
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asymptotic expansion of the inverse REDOR kernel not only
provides a convenient inversion mean, but, more importantly,
gives clear insight into the potential and limits of the REDOR
experiment.

THE INVERSION PROBLEM

The time domain theoretical REDOR signal defined in Eq.
[3] has a decaying oscillatory form (Fig. 2). It should be noted
that it is not always positive and that it decays rather sharply.
Experimentally, the REDOR signal results from an unknown
distribution of couplingsI(nD)

Sexp~t ! 5 E
0

`

I ~nD !S~tnD !dnD . [4]

If the distribution can be assumed to have a simple functional
form such as the sum of a few discrete couplings or even a
continuous Gaussian distribution of couplings, the integral of

Eq. [4] can be numerically evaluated with reasonable accuracy.
Alternatively, Eq. [4] can be analyzed as an integral operator
acting onI(nD) with S(tnD) as a kernel. Then, recovering an
unknown distribution of couplings is equivalent to finding the
inverse of this operator. If a solution to this inversion problem
exists in the form of an integral operator, it is possible to
directly determine the frequency–domain distribution of cou-
pling

I ~nD ! 5 E
0

`

Sexp~t !k~tnD !dt [5]

provided that one is able to calculate the inverse kernelk(tnD).
Indeed, it was first realized by Mueller that the inversion
problem could be solved (16). k(tnD) can be determined using
Mellin transforms (Appendix B) to be

k~tnD!

5 2Î2tnD5
J1/4~Î2tnD!2 2 J21/4~Î2tnD!2

14Î2tnD@J1/4~Î2tnD!J23/4~Î2tnD!

1 J21/4~Î2tnD!J3/4~Î2tnD!#
6 . @6#

The inverse kernel has a divergent oscillatory behavior (Fig. 3)
which renders the numerical evaluation (after truncation) of the
integral of Eq. [5] delicate, albeit possible, because of the
decaying character ofS(tnD). Indeed, numerical evaluation of
the so-called REDOR transform by a truncated sum has been
shown to satisfactorily extract discrete distributions of cou-
plings from model (16) as well as experimental signals (17).

REPRESENTATION OF THE INVERSE REDOR KERNEL

By looking at the somewhat complex expression of the
inverse kernel, inversion through a numerical integration might

FIG. 1. A typical REDOR sequence. The number of rotor period (n) is an
even number.

FIG. 2. Theoretical time-domain REDOR signal for an isolated pair of1

2
spins with an heterodipolar coupling of 300 Hz (Eq. [3]).

FIG. 3. The inverse REDOR kernel (Eq. [6]).
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seem to be a computationally heavy task, necessitating evalu-
ation of the inverse kernel and summing over the time domain
at each sampled frequency. Fortunately, this is not the case.
First, the temporal extension of the REDOR signal is restrained
by its decaying character and the low sensitivity of NMR
allowing for a limited number of significant points. Second, the
kernel needs to be computed only for one frequency, as the
kernel is symmetrical. There is therefore no urgent need to
develop a more sophisticated inversion procedure. It is not easy
though to circumscribe the potential of the REDOR inversion
by looking at Eq. [6] but, as already underlined by Schaeferet
al. (12, 18), the oscillatory nature of the REDOR kernel sug-
gests a behavior for the inverse REDOR operator similar to a
Fourier transform. In this respect, an asymptotic expansion of
the inverse REDOR kernel is particularly informative (16). A
similar approach would be to expand the direct kernel, truncate
it, and invert it in its approximate form. This is the route
followed by McCabe and Wassall on another inversion prob-
lem, dePaking (19, 20). In the present case, we expanded the
exact inverse kernel, thereby gaining a more directly exploit-
able insight. From Hankel’s asymptotic expansions of the
Bessel functions of the first kind (21), we found

k~tnD ! 5
16

p
tnDsin~2Î2tnD ! 2

3

Î2p
cos~2Î2tnD !

2
9

64p

sin~2Î2tnD !

tnD
1

33Î2

2048p

cos~2Î2tnD !

~tnD!2

1
315

65536 2p

sin~2Î2tnD !

~tnD !3 1 OS 1

~tnD !4D . [7]

Replacement of the inverse REDOR kernel in Eq. [5] by this
asymptotic expansion reveals that the inverse REDOR operator
is essentially a weighted sum of a derivative of a cosine
transform, a cosine transform, and primitives of cosine trans-
forms. This suggests that representing the inverse REDOR
kernel by its truncated asymptotic development can provide
valuable insights into the behavior of the signal upon inversion.

As a preliminary, the validity of this representation can be
discussed through graphical comparison of the exact kernel to
the truncated asymptotic expansion (Fig. 4). The dominant
term is by far the first one; however, the ratio of the first two
prefactors being

23

16Î2

1

tnD
> 20.13

1

tnD
,

the second term is expected to be significant, especially at low
values of tnD. As seen in Fig. 4, adding the second term
considerably diminishes the error. The subsequent terms (the
primitives of cosine or sine transforms) improve the overall
representation but introduce a violent divergence at the origin

because of the inverse powers oftnD. The question thus arises
of how many terms of the asymptotic series should be retained
for an optimal representation of the kernel. At a finite value of
tnD, the first neglected term provides a good estimate of the
error. Adding more and more terms, this error initially de-
creases but because of the divergence it is eventually going to
increase after a certain number of terms (N). Truncating the
series at (N 2 1) thus provides the approximation with the
smallest possible error at fixedtnD (22). Inversely, we can
decide to keep only the first two terms and look for the value
of tnD up to which the approximation is optimal. Computing
the values of the individual terms of the series shows that up to
tnD 5 0.22, the first two terms provide the most accurate
representation, while adding more terms improves the repre-
sentation for higher values oftnD. This could be intuited by
looking at the graphical representation of the kernel and of the
series truncated at different orders in Fig. 4. In conclusion,
truncation after the second term is preferable at low frequency
but adding more terms will, in theory, provide a better repre-
sentation of higher frequencies. At intermediate frequencies
the best theoretical representations would require a composite
truncation: two terms belowtnD 5 0.22 and additional terms
beyond that value.

At this point it is useful to consider the experimental impli-
cation of this cutoff value oftnD. As an illustration of this,
truncation after the second term provides the least error only up
to about 5 Hz for a typical temporal extension of 50 ms. On the

FIG. 4. The exact inverse REDOR kernel (fat solid line) and its represen-
tation by truncated asymptotic expansions.
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other hand, with typical spinning at 10 kHz, the first sampling
point is at 0.2 ms, which means that adding more than two
terms would improve the representation for frequencies higher
than about 1 kHz. Theoretically, a composite representation is
thus optimal for frequencies between 5 Hz and 1 kHz in this
case. This, however, somewhat complicates the matters, and
we prefer to represent the kernel across the frequency range
with a single analytical form, that is, as its asymptotic expan-
sion truncated after the second term. If, as we will show, this
representation is satisfactory, the REDOR inversion simply
amounts to a weighted sum of a cosine transform and of its
derivative,

I ~nD ! > 24nD



nD
# @~S~t9!!# 2

3

2
# @~S~t9!!# , [8]

where# stands for the cosine transform operator and where the
change of variablet9 5 (=2/p)t accounts for the definition of
the kernel of the Fourier transform ase2i2pt9nD.

In order to further test and illustrate the validity and signif-
icance of this representation, we have constructed a typical test
signal composed of four isolated pair contributions (Fig. 5).
Comparison of the exact signal inverted by numerical integra-
tion using a tabulated kernel (Eq. [5]) with the approximate one
invertedvia Fourier transforms (Eq. [8]) indeed validates our
approach. Upon inversion, adding the second term (the cosine
transform) to the first one (the derivative of the cosine trans-
form) leads to a significant baseline correction. Theoretically,
as shown above, the baseline could be further improved for low
frequencies (below 1 kHz in the example presented in Fig. 5)
by adding more terms. Practically however, it is apparent
through comparison with the exact inverted signal in Fig. 5 that
truncating after the second term results only in a small baseline
error across the whole frequency range. Furthermore, as will be
shown below, the effect of experimental noise on the first term
far exceeds the correction due to the subsequent terms. Overall,
the representation of the kernel by its asymptotic series trun-
cated after the second term is therefore entirely satisfactory.

DISCUSSION

Whatever the order at which the asymptotic series is trun-
cated, the representation of the kernel by its asymptotic expan-
sion has real advantages. First, it provides computational sta-
bility. Replacing the inverse REDOR operator of Eq. [5] by a
sum of Fourier transforms (Eq. [8]), instead of by a numerical
integration as has been performed by previous authors (16, 17),
provides a more robust inversion procedure. Indeed, algorithms
for Fourier transforms are easily available, fast, and stable. One
must nevertheless recognize that the computational advantage
of the asymptotic expansion representation is minimal and that
choosing to execute Fourier transform algorithms rather than to

tabulate the exact kernel is more a matter of taste and esthetics
than a true necessity.

Perhaps more importantly, the asymptotic expansion helps
to prepare and understand the REDOR experiment. It reveals
that the inverse REDOR operator shares properties with Fou-
rier transforms. Indeed, the asymptotic expansion provides firm
grounds to transpose, from Fourier transforms to REDOR
transforms, the relationships between the time domain and the
frequency domain well known to NMR spectroscopists.

We will explore the significance of this finding by observing
the effects of experimental constraints such as the limitation of
the temporal window, discrete sampling, and noise on the
inverted dipolar spectrum of a model signal. These effects,

FIG. 5. Inversion (bottom) of a simulated signal (top) of 256 points
(temporal extension of 51 ms) obtained atnr 5 10 kHz consisting of four
discrete pairs of couplings of frequencies and relative intensities:1

8
at 100 Hz,

1

4
at 300 Hz,1

8
at 500 Hz, and1

2
at 1 kHz. Zero filling to 2048 points, apodization

by a Kaiser (t 5 5) window (Ref. (23)). Dotted lines: contributions of the first
(positive) and second (negative) term of the expansion. Solid line: sum of the
first two contributions of the expansion (Eq. [8]). Thick line: inversion by
numerical integration.
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which are not obvious by inspecting Eq. [6], are easily pre-
dicted from Eq. [8]. For example, zero filling in the time
domain results in interpolation in the frequency domain. Also,
Eq. [8] helps predict the behavior of the line shape regarding
truncation and apodization (Fig. 6). The effect of the Kaiser
window (23) is tested on a model signal.1 The usual line width
versusripple behavior of Fourier transforms is indeed observed
here. But maybe the more useful insight is provided by the
relationship between the temporal extension of the signal and
the resolution (and cutoff) in the dipolar frequency domain.
This point is illustrated by comparison of the idealized inverted
REDOR signal of Fig. 5 with the more realistic simulation of
Fig. 7, where the temporal extension has been limited. Exper-
imental shortening of the temporal extension of the REDOR
signal leads to a significant loss of resolution. Representation
by Fourier transforms allows use of the Nyquist theorem,
leading to a formal expression for the resolution

DnD 5 nDmin 5
pnr

2Î2nmax

5
p

2Î2tmax

[9]

as well as for the dipolar frequency spectral width

nDmax 5
p

2Î2Dt
5

pnr

4Î2
. [10]

Note also in Fig. 6 how the width of the lines is dominated by
the width of the windowt (a necessity to avoid excessive
ripples) rather than by the temporal extension.

A limitation of practical importance of the REDOR trans-
form can be easily comprehended from Eqs. [9] and [10].

Probing nontrivial multiple bonds connectivity requires mea-
surements of couplings of less than 40 Hz. Direct numerical
application shows that while the dipolar window defined by
Eq. [10] is largely sufficient, Eq. [9] leads to experimentally
unrealistic evolution times (larger than 28 ms).

A less trivial question can also be successfully discussed by
representing the inverse REDOR kernel by its asymptotic
expansion; that is, what is the stability with regard to noise?
We have performed the inversion of a simulated signal con-
taining a normal distribution of noise of 2% variance (Fig. 8).
Despite this relatively low noise level, the inverted REDOR
spectrum exhibits ample oscillations. The dominant term of the
asymptotic expansion of the inverse kernel is the derivative
cosine transform which means that the noise is scaled bytnD.
This introduces a rather violent divergence which is much
more taxing that what can be encountered in the usual NMR

1 This window involving a modified zero-order Besel functionI0 has the
main advantage of providing an adjustable width parametert throughh (t ) 5
I0(t=1 2 4(t /tmax)2)/I0(t ).

FIG. 7. Inversion (bottom) of a simulated signal (top) of 50 points ob-
tained atnr 5 10 kHz of the same characteristics as in Fig. 5. Zero filling to
2048 points, apodization by a Kaiser (t 5 5) window. Inversion by cosine
transforms (Eq. [8]).

FIG. 6. Effect of a Kaiser window of increasing width (Ref. (23)) t 5 1,
3, 5, 10, 100 on the simulated REDOR signal of a single pair (nD 5 1 kHz).
Other characteristics of the simulation are as in Fig. 5.
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inversion problems, or even in dePaking (20), where the signal
is an FID. Indeed, the rapid exponential decay of an FID allows
for a faster divergence of the relevant kernel than the 1/tnD

decay of the REDOR signal of Eq. [3]. Scaling of the noise by
tnD has two direct implications. First, the noise will not be
homogeneously distributed across the spectral window, but its
variance will be amplified with increasing frequencynD, in
effect reducing the theoretical dipolar window defined by Eqs.
[9] and [10] to a maximum practical value of 1.5 kHz in this
example. Second, noise occurring at a later time will have a
more pronounced impact than that occurring at an earlier time
and will significantly deteriorate the resolution which is linked
to the quality of the signal at long time through Eq. [9]. This
last point is particularly irritating, as the level of noise is
precisely expected to be higher in the REDOR experiment at
longer times. Indeed, the REDOR signal is scaled relatively to

the full echo signalS0. As time increases, the echo signal
decreases due to transverse relaxation, resulting in a deterio-
ration of the signal to noise ratio. Moreover, since the sampling
time is determined by the number ofp pulses applied, errors in
the pulse’s phase, amplitude, and synchronization with the
rotor period accumulate at long time, again resulting in a larger
deviation from the theoretical form of the REDOR curve.

Theoretically, the deterioration of the REDOR effect at long
time is not solely due to experimental inaccuracies that could
be minimized by careful setting and phase cycling. Indeed, the
relevance of the REDOR equation (Eq. [1]) is limited to
isolated spin pairs, and such a hypothesis is unlikely to hold
strictly at long time when the contribution of distant spins
becomes significant. The significance of the contribution of the
distant spins to the broadening of the signal can be discussed
within the framework of the REDOR transform. As a typical
example, one can consider a REDOR signal with a temporal
extension of 20 ms and resulting from a dipolar coupling of
500 Hz. Equation [9] then leads to a limit experimental width
of 56 Hz (never attained because of the necessary application
of a windowing function). REDOR signals resulting from
multiple spin heteronuclear couplings, that is aI 2 Sn system
rather than the single pairI 2 S, have been analyzed by
previous authors in the time domain, neglecting the effect of
the homonuclear coupling (2, 24), and it is well established that
contributions from several spins result in a heterogeneous
distribution of couplings (25). For instance theI 2 S2 linear
system leads to two dipolar frequencies at the sum and differ-
ence of the two individual pairs. In the present case, given that
nD evolves asr23, this means that the limit experimental width
of 56 Hz would deteriorate due to interaction with the second
I spin only if it were less than twice as remote—an unlikely
event for a regular array of rare spins. The effect of the distant
spin on the signal is therefore unobservable in most cases (for
rare spins), and the treatment in terms of isolated spin pair (and
thus everything we derived from Eq. [3]) isa posteriori justi-
fied. This discussion exemplifies the kind of simple and useful
insights provided by the REDOR transform.

SUMMARY

Mathematical inspection of the REDOR inversion proposed
by Mueller allowed us to better understand the quality of the
information provided by the REDOR experiment. Representa-
tion of the inverse REDOR kernel by its asymptotic expansion
revealed experimentally relevant properties of the inverse RE-
DOR operator. The latter was found analogous to a weighted
sum of a cosine transform and of its derivative. Besides pro-
viding a new alternative inversion procedure, this finding for-
malized intuitive relationships between the temporal signal and
its dipolar transform. Noticeably, it was found that the spectral
width and resolution in the dipolar dimension are mainly
limited by the instability of the inversion procedure with regard
to noise. Beyond its immediate relevance to the REDOR in-

FIG. 8. Inversion (bottom) of a simulated signal (top) of 50 points ob-
tained atnr 5 10 kHz of the same characteristics as in Fig. 5 with noise of
normal distribution and 2% variance. Zero filling to 2048 points, apodization
by a Kaiser (t 5 5) window. Inversion by cosine transforms (Eq. [8]).
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version, the type of mathematical preparation performed in this
work might prove useful in other MAS–NMR experiments
exhibiting oscillatory, nonperiodic signals for which a straight-
forward Fourier analysis is not necessarily the most efficient
method.

APPENDIX A

Direct Determination of the Analytical Form
of the REDOR Signal

The REDOR signal normalized to the full echo signal is
given by the powder average

S

S0
5

1

4p E
0

2p

da E
0

p

db sin b cos@2Î2tnDcosa sin 2b # .

As recognized by Mueller, solution of such an integral of
trigonometric functions of trigonometric functions will obvi-
ously involve Bessel functions. However, the expansion of the
trigonometric functions into an infinite sum of Bessel function
(15) followed by identification of the infinite sum with a
product of Bessel functions (16) is an unnecessary step. Inte-
grating overa, one gets (26)

S

S0
5

1

2 E
0

p

db sin bJ0~2Î2tnDsin 2b ! ,

which directly leads after integration overb to (27)

S~tnD! 5
p

2Î2
J1/4~Î2tnD!J21/4~Î2tnD ! .

APPENDIX B

Determination of the REDOR Kernel
Using Mellin Transforms

Generality: Determination of an Inverse Kernel
Using Mellin Transforms

Given an integral operator which kernelh is a function of the
product of the variablex and of the integration variabley,

F ~ x! 5 E
0

`

f ~ y!h~ xy!d y, [B.1]

the Mellin transformation allows determination of the inverse
integral operatorf(y) if it exists (28):

f ~ y! 5 E
0

`

F ~ y!k~ xy!dx. [B.2]

Both kernels are related through the relation

H ~s! K ~1 2 s! 5 1 , [B.3]

where H(s) and K(s) are the Mellin transforms ofh and k.
Obviously, this relation must be verified in a region ofs such
that the functionsH(s) andK(s) must be defined ons and (12
s). The Mellin transform and its inverse are

H ~s! 5 E
0

`

us21h~u!du [B.4]

and

h~u! 5
1

2ip E
c2i`

c1i`

u2sH ~s!ds, [B.5]

wherec is real and must belong to the absolute convergence
band of H, that is the interval into whichR(s) satisfies the
convergence ofH.

Finally, Eqs. [B.3] and [B.4] lead to the expression of the
inverse kernel,

k~u! 5
1

2ip E
c2i`

c1i` u2s

H ~1 2 s!
ds, [B.6]

where againc must be such thatH(s) and H(1 2 s) are
analytical.

Application to the REDOR Inversion

The aim is to recover the unknown distribution of coupling
from the experimental signal. Identifying the experimental
signal of Eq. [4] with the integral operator of Eq. [B.1] and the
REDOR signal of Eq. [3] with the direct kernel, one can define
the inverse REDOR kernelk(tnD) and the inverse REDOR
operator as

I ~nD ! 5 E
0

`

Sexp~t !k~tnD !dt . [B.7]

Determination of the Inverse REDOR Kernel

In an article from 1969 (29), a kernel defined as the product
of two cylindrical Bessel functions of orders differing by an
integer was inverted using the Mellin transform method. Al-
though the orders of the Bessel functions involved here (Eq.

279REDOR SIGNAL AND INVERSION



[3]) differ by a half-integer, the formula derived in (29) was
used by Mueller to perform the REDOR inversion (16), and the
deviation from the true inverse REDOR kernel was deemed
minimal (30). Nevertheless, the true inverse REDOR kernel
can be obtained by the same Mellin transform method followed
in Ref. (29). The Mellin transform (Eq. [B.4]) of the direct
kernel of Eq. [3] is (31)

H ~s! 5 212s
G ~1 2 s!G ~s/ 2!

G ~5/4 2 s/ 2!G ~1 2 s/ 2!G ~3/4 2 s/ 2!

0 , R~s! , 1 , [B.8]

leading, from Eq. [B.5], to the expression of the inverse RE-
DOR kernel

k~u! 5
1

2ip E
c2i`

c1i`

~u!2s2s

3
G ~1/4 1 s/ 2!G ~1/ 2 1 s/ 2!G ~3/4 1 s/ 2!

G ~1/ 2 2 s/ 2!G ~s!
ds.

[B.9]

This integral is evaluated using the residue theorem. The result,
expressed as a series, is transformed as in Ref. (29) and leads
to

k~u! 5 4pÎ2u
d

du
$u@ J1/4~u!2 2 J21/4~u!2#% , [B.10]

which can be expressed in the more useful form

k~u! 5 2pÎ2u$ J1/4~u!2 2 J21/4~u!2

1 4u@ J1/4~u!J23/4~u! 1 J21/4~u!J3/4~u!#} .

Finally, after making the necessary change of variables to
account for the fact that the argument of the Bessel functions
is (=2tnD) where the couplingnD is expressed in frequency
units, one gets the formula given in the text (Eq. [6]).
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