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An inversion of the REDOR signal to recover the dipolar cou- where vy is the heterodipolar coupling strength expressed i
plings has been recently proposed [K. T. Mueller et al., Chem.  frequency unitsy, is the rotor spinning frequency(or n/v,) is
Phys. Lett. 242, 535 (1995)]: The corresponding integral transform  the eyolution time, andx and B are the azimuthal and polar
was performed by tabulation of the kernel followed by numerical angles of the internuclear vector with the spinning axis. Th

integration. After explicit determination of the inverse REDOR REDOR signal normalized to the full echo is therefore giver
kernel by the Mellin transform method, we propose an alternative
by the powder average

inversion method based on Fourier transforms. Representation of
the inverse REDOR kernel by its asymptotic expansion reveals
that the inverse REDOR operator is essentially a weighted sum of 2 w

a cosine transform and of its derivative. Consequently, known S(trp) = = = 4f da f dg
properties of Fourier transforms can easily be transposed to the S ™

REDOR inversion, allowing for a precise discussion of the value of

the method. Moreover, the first term of the asymptotic expansion sin 3 cog2 V/EtvD cosa sin 283]. [2]
leading to a derivative of a cosine transform, the REDOR inver-
sion is found to be extremely sensitive to noise, thus considerably
reducing the useful part of the theoretical dipolar window. o 1998
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For a single couplingy, can be obtained by measuring the
REDOR signal at one or a few values of the evolution time an
by adjusting it to the theoretical expression of Eq. [2]
(2, 3, 10, 14. For more complex distributions of couplings, or
when better accuracy is desired, a full REDOR curve is re
corded and adjusted£7, 13. An important limitation of this

INTRODUCTION procedure is that aa priori knowledge of the functional form
of the distribution of couplings is required.

Because the dipolar coupling is strongly dependent on therecently, Mueller made the seminal realization that th:
internuclear distance, its measurement in solids by the roREDOR signal has a simple analytical form as a product c

tional echo double resonance (REDOR) method in magic-angl@indrical Bessel functions of the first kind%) (Appendix A)
spinning (MAS) solids has proven to be a valuable structural

tool. Since its development by Gullion and Shaefgy, fu- -

merous examples of its application in such diverse fields as S(tvp) = 55 Jud V@tvD)J,lm( VEtvD). [3]
biochemistry 2—4), inorganic chemistry5-7), and catalysis 22

(8—11 can be found in the literature. Basically, the REDOR

experiment is a rotor-synchronized spin—echo with additionallt was subsequently demonstrated that the REDOR sign
 pulses on the decoupling channel which selectively prevetfuld be invertediia a “REDOR transform” (L6). This ad-
refocusing of the heterodipolar dephasing. The intensity of tN@nce is particularly fertile, as it allows for the determinatior
echo is related to the heterodipolar coupling strength and to ®fethe distribution of coupling without ang priori assumption
number of appliedr pulses, while MAS averaging ensures th@nd, consequently, permits full use of the REDOR sequence
spectral resolution on the chemical shift axis. Whepulses @ 2D experiment 7): the time evolution during the free
are applied at half and full rotor periods duringotor periods induction decay of the echo leading to a chemical shift axi
(Fig. 1), the heterodipolar dephasing for an isolated interactiﬁ&er traditional Fourier transform and the time evolution dur

pair has been calculated to bE2( 13 ing the 7r pulses train leading to a purely heterodipolar axis
after REDOR transform.

The object of this paper is to reveal through mathematics

IAp| = 4V/§I’IECOSa sin B cosp = 2\/@%0080‘ sin 28, [1] inspection the pract.ical consequences of Eq.. [3]. After goin
Y through the formal inversion problem, we will show that ar
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FIG. 1. A typical REDOR sequence. The number of rotor perioyig an 0 2 4 6 8 10 12 14
even number. X=1vy

FIG. 3. The inverse REDOR kernel (Eq. [6]).
asymptotic expansion of the inverse REDOR kernel not only

provides a convenient inversion mean, but, more importantlyg. [4] can be numerically evaluated with reasonable accurac
giveS .Clea.r InS|ght into the potential and limits of the REDoa|ternative|y’ Eq [4] can be ana|yzed as an integra| Operat(
experiment. acting onl(vp) with Strp) as a kernel. Then, recovering an
unknown distribution of couplings is equivalent to finding the

THE INVERSION PROBLEM inverse of this operator. If a solution to this inversion problen

exists in the form of an integral operator, it is possible tc

The time domain thgoretical REDQR signal defined in EQ’a‘irectly determine the frequency—domain distribution of cou
[3] has a decaying oscillatory form (Fig. 2). It should be note ling

that it is not always positive and that it decays rather sharply.
Experimentally, the REDOR signal results from an unknown

distribution of couplingd (vp) (o) = J” SOk (tvp)dt [5]

0
Seup(t) = f | (vp)S(tro)dvo. [4] provided that one is able to calculate the inverse kekfie},).
0 Indeed, it was first realized by Mueller that the inversior

L _ . problem could be solvedL§). k(tvp) can be determined using
If the distribution can be assumed to have a simple functionghiin transforms (Appendix B) to be

form such as the sum of a few discrete couplings or even a
continuous Gaussian distribution of couplings, the integral of K(two)
D

Jua \/EtvD)z — I \EtvD)z
=2 \,*/Et Vp +4 \/Et VD[J1/4( \,/it VD)J,3/4( \r/ét VD) . [6]
+ ‘J*l/4( \/Et VD)J3/4( \!Et VD)]

The inverse kernel has a divergent oscillatory behavior (Fig. -
which renders the numerical evaluation (after truncation) of th
integral of Eq. [5] delicate, albeit possible, because of th
decaying character &¥(tvy). Indeed, numerical evaluation of
the so-called REDOR transform by a truncated sum has be
shown to satisfactorily extract discrete distributions of cou
plings from model {6) as well as experimental signals7j.

S(tvy)

0 10 20 30 40 50
t=n/v, (ms)

FIG. 2. Theoretical time-domain REDOR signal for an isolated paig of By looking at the somewhat complex expression of th
spins with an heterodipolar coupling of 300 Hz (Eq. [3]). inverse kernel, inversion through a numerical integration migt

REPRESENTATION OF THE INVERSE REDOR KERNEL
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seem to be a computationally heavy task, necessitating evalu- 4 -,
ation of the inverse kernel and summing over the time domain !
at each sampled frequency. Fortunately, this is not the case. '.
First, the temporal extension of the REDOR signal is restrained -
by its decaying character and the low sensitivity of NMR 3k
allowing for a limited number of significant points. Second, the 7
kernel needs to be computed only for one frequency, as the i
kernel is symmetrical. There is therefore no urgent need to [
develop a more sophisticated inversion procedure. Itis noteasy 2 i
though to circumscribe the potential of the REDOR inversion rod
by looking at Eq. [6] but, as already underlined by Schaeter = |
al. (12, 18, the oscillatory nature of the REDOR kernel sug- <~ | &
gests a behavior for the inverse REDOR operator similar to a 1k
Fourier transform. In this respect, an asymptotic expansion of
the inverse REDOR kernel is particularly informativis). A
similar approach would be to expand the direct kernel, truncate i
it, and invert it in its approximate form. This is the route 0
followed by McCabe and Wassall on another inversion prob-
lem, dePaking X9, 20. In the present case, we expanded the

exact
»»»»»»»» one term expansion
— two terms expansion
_____ three terms expansion
——————— four terms expansion
---------- five terms expansion

exact inverse kernel, thereby gaining a more directly exploit-

able insight. From Hankel's asymptotic expansions of the iy R . e 1 R R

Bessel functions of the first kind®(), we found 0.0 02 0.4 06 0.8 1.0
x=tv

3
E coq?2 \EtVD) FIG. 4. The exact inverse REDOR kernel (fat solid line) and its represen
|2TT

16
k(tVD) = 7tVDSIn(2\J2tVD) -
T \ tation by truncated asymptotic expansions.

9 sin(2\2trp) 3342 cog2,2twp) ' _ _
641 twg 20487 (twp)? because of the inverse powerstef. The question thus arises
of how many terms of the asymptotic series should be retaine
315 sin(Z\@tvD) 1 for an optimal representation of the kernel. At a finite value o
* 65536 27 (tvp)® ((IVD)4>' [7] tvp, the first neglected term provides a good estimate of th
error. Adding more and more terms, this error initially de-
Replacement of the inverse REDOR kernel in Eq. [5] by thig€ases but because Qf the divergence it is eventuglly going
asymptotic expansion reveals that the inverse REDOR operdfifféase after a certain number of term.(Truncating the
is essentially a weighted sum of a derivative of a cosiR¢"i€S atll — 1) thus provides the approximation with the
transform, a cosine transform, and primitives of cosine trangmallest possible error at fixey, (22). Inversely, we can
forms. This suggests that representing the inverse RED@ARCIE to keep only the first two terms and look for the valu
kernel by its truncated asymptotic development can provi@f tvo UP to which the approximation is optimal. Computing
valuable insights into the behavior of the signal upon inversiofile values of the individual terms of the series shows that up-
As a preliminary, the validity of this representation can b#o = 0.22, the first two terms provide the most accurat
discussed through graphical comparison of the exact kernef@@resentation, while adding more terms improves the repr
the truncated asymptotic expansion (Fig. 4). The dominapfntation for higher values afp. This could be intuited by
term is by far the first one; however, the ratio of the first tw0King at the graphical representation of the kernel and of tt
prefactors being series truncated at different orders in Fig. 4. In conclusior
truncation after the second term is preferable at low frequen
3 1 but adding more terms will, in theory, provide a better repre
- T = _013— sentation of higher frequencies. At intermediate frequencie
16 \/E tvp tvp ' the best theoretical representations would require a compos

truncation: two terms belowy, = 0.22 and additional terms
the second term is expected to be significant, especially at Ibeyond that value.

values oftyp. As seen in Fig. 4, adding the second term At this point it is useful to consider the experimental impli-
considerably diminishes the error. The subsequent terms (taion of this cutoff value otvy. As an illustration of this,

primitives of cosine or sine transforms) improve the overatfuncation after the second term provides the least error only t
representation but introduce a violent divergence at the origimabout 5 Hz for a typical temporal extension of 50 ms. On th




276 D’ESPINOSE AND FRETIGNY

other hand, with typical spinning at 10 kHz, the first sampling 1.0+
point is at 0.2 ms, which means that adding more than two ]
terms would improve the representation for frequencies higher
than about 1 kHz. Theoretically, a composite representation is ]
thus optimal for frequencies between 5 Hz and 1 kHz in this 07+
case. This, however, somewhat complicates the matters, and 064,
we prefer to represent the kernel across the frequency range
with a single analytical form, that is, as its asymptotic expan-

sion truncated after the second term. If, as we will show, this '
representation is satisfactory, the REDOR inversion simply 03d ™
amounts to a weighted sum of a cosine transform and of its '
derivative, "

09+

| (vp) = 4vDa %[(S(t))]—%[(sa))] [8] 0o 10 20 30 40 50
t (ms)

where stands for the cosine transform operator and where the
change of variabl¢’ = (\V2/m)t accounts for the definition of
the kernel of the Fourier transform as'2™ ",
In order to further test and illustrate the validity and signif-
icance of this representation, we have constructed a typical test
signal composed of four isolated pair contributions (Fig. 5). ,
Comparison of the exact signal inverted by numerical integra- j" /\

tion using a tabulated kernel (Eg. [5]) with the approximate one

invertedvia Fourier transforms (Eq. [8]) indeed validates our L) L o

approach. Upon inversion, adding the second term (the cosine A

transform) to the first one (the derivative of the cosine trans- :

form) leads to a significant baseline correction. Theoretically,

as shown above, the baseline could be further improved for low . ey

frequencies (below 1 kHz in the example presented in Fig. 5) 0.0 05 1.0 5.0 55

by adding more terms. Practically however, it is apparent v, (kH2)

through comparison with the exact inverted signal in Fig. 5 that

truncating after the second term results only in a small baselip&!®: 5 Inversion (bottom) of a simulated signal (top) of 256 points
.. (femporal extension of 51 ms) obtainedat= 10 kHz consisting of four

error across the whole frequency range. Furthermore, as will Srete pa|rs of couplings of frequencies and relative intensfias100 Hz,

shown below, the effect of experimental noise on the first terfﬁt 300 Hz at 500 Hz, and at 1 kHz. Zero filling to 2048 points, apodization

far exceeds the correction due to the subsequent terms. Ovebglh Kaiser ¢ = 5) window (Ref. 3)). Dotted lines: contributions of the first

the representation of the kernel by its asymptotic series trupositive) and second (negative) term of the expansion. Solid line: sum of tt

cated after the second term is therefore entirely satlsfactor%Lsézﬁgaf?;zg’r‘;g’:f of the expansion (Eq. [8]). Thick line: inversion by

DISCUSSION tabulate the exact kernel is more a matter of taste and esthet
than a true necessity.

Whatever the order at which the asymptotic series is trun-Perhaps more importantly, the asymptotic expansion helj
cated, the representation of the kernel by its asymptotic expam-prepare and understand the REDOR experiment. It reves
sion has real advantages. First, it provides computational sii@at the inverse REDOR operator shares properties with Fo
bility. Replacing the inverse REDOR operator of Eq. [5] by aer transforms. Indeed, the asymptotic expansion provides fir
sum of Fourier transforms (Eqg. [8]), instead of by a nhumericgrounds to transpose, from Fourier transforms to REDOI
integration as has been performed by previous auti&sl(, transforms, the relationships between the time domain and t
provides a more robust inversion procedure. Indeed, algorithfinsquency domain well known to NMR spectroscopists.
for Fourier transforms are easily available, fast, and stable. On&Ve will explore the significance of this finding by observing
must nevertheless recognize that the computational advanttigeeffects of experimental constraints such as the limitation
of the asymptotic expansion representation is minimal and thé temporal window, discrete sampling, and noise on th
choosing to execute Fourier transform algorithms rather thanitwerted dipolar spectrum of a model signal. These effect
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FIG. 6. Effect of a Kaiser window of increasing width (Re3)) r = 1,
3, 5, 10, 100 on the simulated REDOR signal of a single pgjr£€ 1 kHz).
Other characteristics of the simulation are as in Fig. 5.

Probing nontrivial multiple bonds connectivity requires mea
surements of couplings of less than 40 Hz. Direct humeric:
application shows that while the dipolar window defined by
Eq. [10] is largely sufficient, Eq. [9] leads to experimentally
unrealistic evolution times (larger than 28 ms).

A less trivial question can also be successfully discussed |
representing the inverse REDOR kernel by its asymptoti
expansion; that is, what is the stability with regard to noise
We have performed the inversion of a simulated signal cor
taining a normal distribution of noise of 2% variance (Fig. 8)
Despite this relatively low noise level, the inverted REDOFR
spectrum exhibits ample oscillations. The dominant term of th
asymptotic expansion of the inverse kernel is the derivativ
cosine transform which means that the noise is scaledhy
This introduces a rather violent divergence which is mucl
more taxing that what can be encountered in the usual NM

1.01

which are not obvious by inspecting Eq. [6], are easily pre-
dicted from Eq. [8]. For example, zero filling in the time 084
domain results in interpolation in the frequency domain. Also,
Eq. [8] helps predict the behavior of the line shape regarding
truncation and apodization (Fig. 6). The effect of the Kaiser
window (23) is tested on a model signtilhe usual line width = .

versugipple behavior of Fourier transforms is indeed observed > 044

here. But maybe the more useful insight is provided by the bt
relationship between the temporal extension of the signal and 024 .

06 .

the resolution (and cutoff) in the dipolar frequency domain. ",

This point is illustrated by comparison of the idealized inverted
REDOR signal of Fig. 5 with the more realistic simulation of

Fig. 7, where the temporal extension has been limited. Exper-
imental shortening of the temporal extension of the REDOR

signal leads to a significant loss of resolution. Representation
by Fourier transforms allows use of the Nyquist theorem,

leading to a formal expression for the resolution

Avp=vy = r T [9]
O 2 2N 212t

as well as for the dipolar frequency spectral width f\ j \

_om Ty 10
o T o AL 4\2° 0]

Note also in Fig. 6 how the width of the lines is dominated by
the width of the windowr (a necessity to avoid excessive

ripples) rather than by the temporal extension. 6 1

A limitation of practical importance of the REDOR trans-
form can be easily comprehended from Egs. [9] and [10].

T T T T T

3
v, (kHz)

1 This window involving a modified zero-order Besel functigphas the
main advantage of providing an adjustable width parameteroughh (t) =

lo(TV1 = 4(t/t 2021 o(T).

FIG. 7. Inversion (bottom) of a simulated signal (top) of 50 points ob-
tained aty, = 10 kHz of the same characteristics as in Fig. 5. Zero filling to
2048 points, apodization by a Kaiser € 5) window. Inversion by cosine
transforms (Eq. [8]).
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the full echo signalS,. As time increases, the echo signal
104, decreases due to transverse relaxation, resulting in a deter
1 ration of the signal to noise ratio. Moreover, since the samplin
08+ time is determined by the number safpulses applied, errors in
the pulse’'s phase, amplitude, and synchronization with tk
rotor period accumulate at long time, again resulting in a large
deviation from the theoretical form of the REDOR curve.
. Theoretically, the deterioration of the REDOR effect at lonc
044 time is not solely due to experimental inaccuracies that coul
, be minimized by careful setting and phase cycling. Indeed, tf
0.2 ', relevance of the REDOR equation (Eqg. [1]) is limited to
e e, isolated spin pairs, and such a hypothesis is unlikely to hol
e e s strictly at long time when the contribution of distant spins
becomes significant. The significance of the contribution of th
i ' y ) ' ' N distant spins to the broadening of the signal can be discuss
within the framework of the REDOR transform. As a typical
example, one can consider a REDOR signal with a tempor
extension of 20 ms and resulting from a dipolar coupling o
500 Hz. Equation [9] then leads to a limit experimental widtt
of 56 Hz (never attained because of the necessary applicati
of a windowing function). REDOR signals resulting from
multiple spin heteronuclear couplings, that it & S, system

rather than the single pair — S have been analyzed by
1L M M previous authors in the time domain, neglecting the effect ¢
AR

»\ the homonuclear couplin@(24), and it is well established that

064

S o (1)

0.0

contributions from several spins result in a heterogeneol
distribution of couplings Z5). For instance thé — S, linear

system leads to two dipolar frequencies at the sum and diffe

ence of the two individual pairs. In the present case, given th

—— vp evolves as 3, this means that the limit experimental width

o 1 2 s 4 5 of 56 Hz would deteriorate due to interaction with the secon

v, (kH2) | spin only if it were less than twice as remote—an unlikely

event for a regular array of rare spins. The effect of the distal

FIG. 8. Inversion (bottom) of a simulated signal (top) of 50 points obgpin on the signal is therefore unobservable in most cases (1

tained aty, = 10 kHz of the same characteristics as in Fig. 5 with noise qf ; ; ; : ;
A ) " . are spins), and the treatment in terms of isol in pair (al
normal distribution and 2% variance. Zero filling to 2048 points, apodization pins) of isolated spin pair (a

by a Kaiser ¢ = 5) window. Inversion by cosine transforms (Eq. [8]). t_hus evgrything we derived f.rlom Eq. [3]) SPO.SteriOrijUSti-
fied. This discussion exemplifies the kind of simple and useft

insights provided by the REDOR transform.

inversion problems, or even in dePakir§), where the signal

is an FID. Indeed, the rapid exponential decay of an FID allows SUMMARY

for a faster divergence of the relevant kernel than thepl/

decay of the REDOR signal of Eq. [3]. Scaling of the noise by Mathematical inspection of the REDOR inversion propose
tvp has two direct implications. First, the noise will not béoy Mueller allowed us to better understand the quality of th
homogeneously distributed across the spectral window, butiitéormation provided by the REDOR experiment. Represent:
variance will be amplified with increasing frequeney, in tion of the inverse REDOR kernel by its asymptotic expansio
effect reducing the theoretical dipolar window defined by Eqeevealed experimentally relevant properties of the inverse RI
[9] and [10] to a maximum practical value of 1.5 kHz in thiDOR operator. The latter was found analogous to a weighte
example. Second, noise occurring at a later time will havesam of a cosine transform and of its derivative. Besides prc
more pronounced impact than that occurring at an earlier tindieling a new alternative inversion procedure, this finding for
and will significantly deteriorate the resolution which is linkeanalized intuitive relationships between the temporal signal ar
to the quality of the signal at long time through Eq. [9]. Thiés dipolar transform. Noticeably, it was found that the spectre
last point is particularly irritating, as the level of noise isvidth and resolution in the dipolar dimension are mainly
precisely expected to be higher in the REDOR experiment lahited by the instability of the inversion procedure with regarc
longer times. Indeed, the REDOR signal is scaled relatively to noise. Beyond its immediate relevance to the REDOR ir

<
—= ]
e
pp——
—]
——]
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version, the type of mathematical preparation performed in this x

work might prove useful in other MAS-NMR experiments f(y) =J F(y)k(xy)dx. [B.2]
exhibiting oscillatory, nonperiodic signals for which a straight- 0

forward Fourier analysis is not necessarily the most efficient

method. Both kernels are related through the relation

APPENDIX A HEKA =) =1, B3]
Direct Determination of the Analytical Form Whe_re H(S) ar_ld K(s)_are the Mellin _t_rans_forms (.)h and k.
of the REDOR Signal Obviously, th_ls relation must be verified ina regionssguch
that the function$i(s) andK(s) must be defined osand (1—
The REDOR signal normalized to the full echo signal is). The Mellin transform and its inverse are
given by the powder average

s 1 [ _ H(s) = J usth(u)du [B.4]
. [~ .
S, = MJ da f dp sin B cog22tvpcosa sin 28 ]. 0
0 0
and

As recognized by Mueller, solution of such an integral of cHie
trigonometric functions of trigonometric functions will obvi- h(u) =5 u—H(s)ds, [B.5]
ously involve Bessel functions. However, the expansion of the ciee

trigonometric functions into an infinite sum of Bessel function
(15 followed by identification of the infinite sum with awherec is real and must belong to the absolute convergenc
product of Bessel functionsl§) is an unnecessary step. Intepand ofH, that is the interval into whicti(s) satisfies the
grating overa, one gets Z6) convergence oH.

Finally, Egs. [B.3] and [B.4] lead to the expression of the
inverse kernel,

S 1~ >
go = > f dg sin BJy(2 \f/ZtVDSin 28),
0

1 c+ioe ufs
k(U) = 2|7Tf m ds, [BG]

which directly leads after integration ovgrto (27)

T = - where againc must be such thaH(s) and H(1 — <) are
S(tvp) = TVE Jua \2tvp)I -y y2twp) . analytical.
Application to the REDOR Inversion
APPENDIX B . L .
The aim is to recover the unknown distribution of coupling
Determination of the REDOR Kernel fr.om the experimental gignal. Identifying the experimenta
Using Mellin Transforms signal of Eg. [4] with the m'FegraI operator of Eq. [B.1] and the
. o REDOR signal of Eq. [3] with the direct kernel, one can define
Generality: Determination of an Inverse Kernel the inverse REDOR kernéi(tvp) and the inverse REDOR
Using Mellin Transforms operator as
Given an integral operator which kerrfeis a function of the
product of the variable and of the integration variablg ®
| (VD) = Sexp(t)k(tVD)dt [B?]
0
F(x) = f f(y)h(xy)dy, [B.1] Determination of the Inverse REDOR Kernel

0 In an article from 196929), a kernel defined as the product

of two cylindrical Bessel functions of orders differing by an
the Mellin transformation allows determination of the inversimteger was inverted using the Mellin transform method. Al
integral operatof(y) if it exists (28): though the orders of the Bessel functions involved here (E
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[3]) differ by a half-integer, the formula derived i) was 3

used by Mueller to perform the REDOR inversidg), and the
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account for the fact that the argument of the Bessel functiofi$ n. abramowitz and 1. A. Stegun, “Handbook of Mathematical

is (V2tvp) where the coupling,, is expressed in frequency

units, one gets the formula given in the text (Eq. [6]). 27
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